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LONG-TERM GOALS  
 
This project is a fundamental study of the basic dynamical mechanisms involved, and the consequent 
theoretical modelling approaches needed, in the generation and propagation of internal solitary waves 
across the continental shelf and slope. 
 
OBJECTIVES  
 
There are two principal objectives.  The first is to develop and refine amplitude evolution equations of 
the Korteweg-de Vries  type to the point where they can be used as validated models for the 
propagation of internal solitary waves.  The second  is to undertake a major re-examination of the 
generation process, using a combination of theoretical and numerical analyses, and emphasising the 
distinction between two-dimensional and three-dimensional mechanisms. 
 
APPROACH  
 
Our approach is to develop an understanding of the fundamental dynamical processes involved through 
a combination of theoretical analyses and numerical simulations. Our research group comprises post-
doctoral fellows, research students and international collaborators who make long-term visits. We 
maintain contact with those making field and laboratory observations,  with the aim of establishing an 
ongoing interactive collaboration on data interpretation, model development and validation. 
 
WORK COMPLETED  
 
For the first objective, the development and refinement  of  amplitude evolution equations of the 
Korteweg-de Vries type, the main focus to this point has been on understanding the role of cubic 
nonlinearity vis-à-vis that of quadratic nonlinearity in several contexts. First, we have obtained a 
correct asymptotic derivation of the coefficients for the quadratic and cubic nonlinear terms in the 
extended Korteweg-de Vries (eKdV) equation  for background flows which allow for arbitrary density 
and current stratification, and importantly, allow for a free surface. Second, we have examined the 
solitons generated by various initial conditions in this eKdV model, and demonstrated some striking 
differences from the well-known situation for the KdV model. Third, we have examined the role of 
variable topography in deforming the solitary wave, and have determined the conditions under which 
the wave may break up into several wave packets, each of which may themselves generate new solitary 
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waves. Fourth, we have examined the effect of various frictional processes on the family of solitary 
wave solutions of this eKdV equation, using primarily asymptotic techniques. 
 
For the second objective, that is the utilisation of a combination of theoretical analyses and numerical  
simulations to re-examine the principal generation processes of internal solitary waves,  we have 
focussed first on the development of a suite of two- and –three-dimensional numerical codes for this 
purpose, and secondly on the development of  theoretical models of the Boussinesq-type, which can 
incorporate arbitrary stratification and topography which may vary in both horizontal directions. Our 
two-dimensional spectral codes for the Euler equations have been extended to three dimensions, and 
are now being tested and validated.  A theoretical model suitable for describing the generation of the 
internal tide, which allows for general stratification and topography has been developed, and is now 
being analysed.  Results from the linearized, non-dispersive version of this model show that it can 
reconcile internal ray generation mechanisms with mode scattering mechanisms.  In addition, we have 
used a forced KP model equation to examine the transcritical generation of internal solitary waves by 
flow over an obstacle, in a detailed study of the effect of the obstacle shape and orientation. 
 
RESULTS  
 
First, we have examined various aspects of the eKdV model for the propagation of internal solitary 
waves. For the present discussion this is given by, 
                       At + ∆Ax + µAAx + vA2Ax + λAxxx + Γ(A) = 0,                   (1) 
where A(x, t) is the amplitude of a representative isopycnal displacement and incorporates an 
amplification factor which takes into account the variable background, t  is a time-like variable 
describing the evolution of a solitary wave, and x  is a phase variable describing the shape of the 
solitary wave. The coefficients ∆,µ ,ν,λ are determined by the linear long-wave modal function, which 
in turn depends on the background density and current stratification. The expression Γ  is a 
dissipative term, which can take several forms.  Explicit expressions are available from our  work for  
the key coefficients

(A)

µ,ν,λ  for arbitrary density and current stratification, and in the presence of a free 
surface. One of the most important features to emerge from our work is the role of the cubic nonlinear 
term with coefficient ν  vis-à-vis that of the quadratic nonlinear term with coefficient µ . This is 
immediately evident in the richer structure of the solitary wave solutions supported  by (1) for the 
canonical case when the coefficients are all constants, and there are no dissipative or forcing terms, 
when compared with the corresponding family of solitary wave solutions of the KdV equation (i.e. (1) 
with only quadratic  nonlinearity). These are shown in Figure 1, where, without any loss of generality, 
it has been assumed that  µ,λ  are both positive. Thus, when the coefficient ν  of the cubic nonlinear 
term is negative (Figure 1a) we see that the solitary waves resemble those of the KdV equation for 
small amplitudes, but for large amplitudes, they are much thicker and reach a limiting amplitude of 
−µ /ν , known as the  “thick”  wave. On the other hand, when the coefficient ν  of the cubic nonlinear 
term is positive (Figure 1b), there are two families of solitary waves.  That family with positive 
polarity resembles the KdV family, but that with negative polarity is quite different and in particular 
has no small-amplitude limit; instead, there is a lower bound for an amplitude of −2µ /ν  and  solutions 
of (1) with lower energy are represented by breathers, that is, solutions which resemble pulsating 
solitary waves.  Given that observed internal solitary waves are often quite large, these two key 
differences from the familiar KdV theory are  very significant.  
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Figure 1a Solitary wave shape for negative cubic nonlinearity. 
 
Figure 1b Solitary wave shape for positive cubic nonlinearity. 

 

ve across typical continental shelves, such as the NW  Australian Shelf, the Malin 
oast of Scotland, and the Artic shelf. In each case the simulations are initialized 
itary wave of depression in the deep water. As the wave propagates shoreward, it 
lly, that is, it conserves its wave-action flux, until a critical point is reached, beyond 
aks up into several wave packets, each of which may then generate several smaller 
etimes of the opposite polarity. The critical points are defined by the zeros of the 

 the quadratic and the cubic nonlinear terms respectively in equation (1). It is 
at on each of these shelves, the coefficients in equation (1) undergo considerable 
e shelf, and in particular, on the NW Shelf, several critical points were found. In a 
udy, we have considered the effect of dissipation on a solitary wave, using various 
tive term Γ  representing Newtonian damping, laminar or turbulent boundary 
amping due to interior turbulence. For a negative coefficient 

(A)
ν  of the coefficient of 

h µ,λ  both positive)  we find that the decay of a  “thick” wave can lead to the 
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formation of secondary wave packets, while for a positive coefficient ν , the decay of a wave of 
negative polarity leads to the formation of breather states, which resemble a wave packet.  
 
Second, motivated by recent satellite and in situ observations that show internal solitary waves 
emanating from point sources on the continental slope, often submarine canyons, we have focussed our 
present research work on the development of theoretical and numerical models which can incorporate 
two-dimensional variability in the bottom topography. Our three-dimensional spectral codes for the 
Euler equations are now developed, and are being tested and validated.  These codes have the potential 
to provide higher spatial resolution than most current codes, and importantly are non-hydrostatic, so 
they can simulate both the generation process and the subsequent evolution into solitary waves. An 
asymptotic theoretical model suitable for describing the generation of the internal tide, which allows 
for general stratification and topography has been developed, and is now being analysed. The basis for 
the development of this model is a novel decomposition into vertical modes which allows for arbitrary 
topographic variation. Importantly, we retain the free-surface mode in the model, so that we are not 
only able to describe the forcing of the internal tide by the interaction of the barotropic tide with 
topgraphy, but also have the potential to determine the feedback on the barotropic tide.  In its simplest 
form, when it is linearised and non-dispersive, we are using it to describe the generation of the internal 
tide, for both one-dimensional and two-dimensional topography. Our results in the former case show 
that this model can reconcile internal ray generation mechanisms with mode scattering mechanisms.  
 
Another aspect of two-dimensionality in the forcing mechanism is being examined for the case when 
internal solitary waves are generated by transcritical flow over topography. Here we use as the model 
equation, the forced KP equation, so that we can make a comparison with the analogous results for a 
one-dimensional process described the forced KdV equation (i.e. equation (1)).  Also, we have 
obtained some preliminary results from   a  fully three-dimensional Euler equation code. We have 
conducted a thorough study of the effect of the obstacle shape and orientation on the upstream and 
downstream wave trains, and find that although there is overall qualitative agreement with the results 
from the corresponding forced KdV  equation, there are some significant differences, notably in the 
structure of the downstream waves.  
 
IMPACT/APPLICATIONS  
 
We anticipate that the results obtained will inform the scientific community about the structure of 
internal solitary waves, their behaviour under such environmental impacts as friction and topography, 
and the processes which favour their generation. 
 
RELATED PROJECTS 
 
“Generation of internal tides and internal solitary waves on the continental shelf” (ONR project,  
N00014-02-1-1004).  This is essentially a continuation of this project with a greater emphasis on the 
role of topography. 
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